### UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

## MARK SCHEME for the May/June 2010 question paper

## for the guidance of teachers

# 9709 MATHEMATICS

9709/41

Paper 41, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



UNIVERSITY of CAMBRIDGE International Examinations

| Page 2 | Mark Scheme: Teachers' version         | Syllabus | Paper |
|--------|----------------------------------------|----------|-------|
|        | GCE A/AS LEVEL – October/November 2009 | 9709     | 41    |

#### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme: Teachers' version         | Syllabus | Paper |
|--------|----------------------------------------|----------|-------|
|        | GCE A/AS LEVEL – October/November 2009 | 9709     | 41    |

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

### **Penalties**

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through  $\sqrt{"}$  marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

|   | Page 4 |            | Mark Scheme: Teache                                                                                                                                          |       | Syllabus |                                                                                                                                              |                                              |                                                  |
|---|--------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|
|   |        |            | GCE AS/A LEVEL – Ma                                                                                                                                          | y/Jun | e 2010   | 9                                                                                                                                            | 709                                          | 41                                               |
| 1 | DF     | = 35000/   | 16                                                                                                                                                           | B1    |          |                                                                                                                                              |                                              |                                                  |
|   |        |            |                                                                                                                                                              | M1    |          | For using Newt                                                                                                                               | on's seco                                    | nd law                                           |
|   | DF     | – 1150g s  | $\sin 1.2^{\circ} - 975 = 1150a$                                                                                                                             | A1    |          |                                                                                                                                              |                                              |                                                  |
|   | Acc    | eleration  | is 0.845 ms <sup>-2</sup>                                                                                                                                    | A1    |          |                                                                                                                                              |                                              |                                                  |
|   |        |            | 2                                                                                                                                                            |       | [4]      |                                                                                                                                              |                                              |                                                  |
| 2 | (i)    | Accelera   | ation is 0.09 ms <sup>-2</sup>                                                                                                                               | B1    | [1]      |                                                                                                                                              |                                              |                                                  |
|   | (ii)   | D = (0 +   | $\begin{array}{l} (8+4)0.18 \text{ or} \\ 1/2 \ 0.09 \times 2^2) + (0.18 \times 4 + 1/2 \ 0 \times 4^2) \\ \times \ 2 - 1/2 \ 0.09 \times 2^2)] \end{array}$ | M1    |          | For using the id<br>distance or for r<br>$s = ut + \frac{1}{2} at^2$                                                                         |                                              | •                                                |
|   |        | Distance   | e is 1.08 m                                                                                                                                                  | A1    | [2]      |                                                                                                                                              |                                              |                                                  |
|   | (iii)  | [½ 3V =    | = 1.08]                                                                                                                                                      | M1    |          | For using area of = area of trapez                                                                                                           | •                                            | ;                                                |
|   |        | Greatest   | t speed is $0.72 \mathrm{ms}^{-1}$                                                                                                                           | A1    | [2]      | _                                                                                                                                            |                                              |                                                  |
|   |        |            |                                                                                                                                                              |       | -        | SR (max 1 out of<br>assume (implici-<br>at a specific tim<br>(t = 11  or  t = 9.3)<br>from $\frac{1}{2}(0 + V)$<br>from $\frac{1}{2}(0 + V)$ | itly) that s<br>ie<br>(5) $0.72 \pm 3 = 1.0$ | speed is greatest<br>ms <sup>-1</sup> B1<br>8 or |
| 3 | (i)    | [R + 7si   | $n45^{\circ} = 0.8g$ ]                                                                                                                                       | M1    |          | For resolving for terms)                                                                                                                     | orces verti                                  | ically (needs 3                                  |
|   |        | Normal     | component is 3.05 N                                                                                                                                          | A1    | [2]      | AG                                                                                                                                           |                                              |                                                  |
|   | (ii)   | F = 7cos   | 545°                                                                                                                                                         | B1    |          |                                                                                                                                              |                                              |                                                  |
|   |        |            |                                                                                                                                                              | M1    |          | For using $\mu = F$                                                                                                                          | /3.05                                        |                                                  |
|   |        | Coeffici   | ent is 1.62                                                                                                                                                  | A1    |          |                                                                                                                                              |                                              |                                                  |
|   |        |            |                                                                                                                                                              |       | [3]      |                                                                                                                                              |                                              |                                                  |
| 4 |        |            |                                                                                                                                                              | M1    |          | For resolving for in the <i>y</i> -direction                                                                                                 |                                              | e <i>x</i> -direction or                         |
|   | X =    | 160 + 25   | $50\cos\alpha$                                                                                                                                               | A1    |          |                                                                                                                                              |                                              |                                                  |
|   | Y =    | 370 - 25   | $0\sin \alpha$                                                                                                                                               | A1    |          |                                                                                                                                              |                                              |                                                  |
|   |        |            |                                                                                                                                                              | M1    |          | For using $R^2 = 2$                                                                                                                          | $X^2 + Y^2$                                  |                                                  |
|   | Mag    | gnitude is | 500N                                                                                                                                                         | Alft  |          | ft 264 N for con                                                                                                                             | sistent sir                                  | n/cos mix                                        |
|   |        |            |                                                                                                                                                              | M1    |          | For using $\tan \theta$                                                                                                                      |                                              |                                                  |
|   | Req    | uired ang  | gle is 36.9° (or 0.644 rads)                                                                                                                                 | A1ft  | [7]      | ft 29.5° for cons                                                                                                                            | sistent sin                                  | /cos mix                                         |

| Page 5 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2010 | 9709     | 41    |

| Alter | rnativ       | e for 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1         |     | For finding the resultant in magnitude and direction of <b>two</b> forces and obtaining a triangle enabling the calculation of the resultant of the <b>three</b> forces |
|-------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Tria         | ngle has sides 403, 250 and R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1         |     | or equivalent for different choice of two forces*                                                                                                                       |
|       | Tria         | ngle has angle opposite R equal to 97.1°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1         |     | As *                                                                                                                                                                    |
|       | $[R^2$       | $= 403^2 + 250^2 - 2 \times 403 \times 250 \cos 97.1^{\circ}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1         |     | For using cosine rule to find R                                                                                                                                         |
|       | Mag          | gnitude is 500 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1         |     |                                                                                                                                                                         |
|       | [sin         | $(66.6^{\circ} - z) \div 250 = \sin 97.1^{\circ} \div R]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1         |     | For using sine rule to find z                                                                                                                                           |
|       | Req          | uired angle is 36.9°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1         |     |                                                                                                                                                                         |
| 5     | (i)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1         |     | For using KE loss = PE gain or<br>$0^2 = u^2 - 2(g \sin \alpha)(0.45/\sin \alpha)$                                                                                      |
|       |              | $\frac{1}{2}$ (m)u <sup>2</sup> = (m)g(0.45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1         |     |                                                                                                                                                                         |
|       |              | Speed is 3 ms <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1         |     |                                                                                                                                                                         |
|       | /•• <b>`</b> | $[DD] = \frac{1}{2} + \frac{1}{2}$ | ۲ <i>.</i> | [3] |                                                                                                                                                                         |
|       | (11)         | $[PE gain = \frac{1}{2} 0.3 \times 3^2 - 0.39]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1         |     | For using PE gain = KE lost – WD $\oplus$                                                                                                                               |
|       |              | PE gain is 0.96 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1ft       |     | ft incorrect u                                                                                                                                                          |
|       |              | [0.3gh = 0.96]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DM1        |     | For using PE = mgh; dependent on the<br>given WD being reflected in the value for<br>PE used                                                                            |
|       |              | R is 0.32 m higher than the level of P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1         | [4] |                                                                                                                                                                         |
| 6     | (i)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1         |     | For applying Newton's second law to A or<br>to B or using $(M + m)a = Mg - F$                                                                                           |
|       |              | 0.45a = 0.45g - T and $0.2a = T - F$ or<br>(0.45 + 0.2)a = 0.45g - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1         |     |                                                                                                                                                                         |
|       |              | $F = 0.3 \times 0.2g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B1         |     |                                                                                                                                                                         |
|       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1         |     | For substituting for F and solving for a                                                                                                                                |
|       |              | Acceleration is 6 ms <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1         |     |                                                                                                                                                                         |
|       |              | $[v^2 = 2 \times 6 \times [2 - (2.8 - 2.1)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1         |     | For using $v^2 = (0^2) + 2as$<br>(s must be less than 2)                                                                                                                |
|       |              | Speed is $3.95 \mathrm{ms}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1         |     | AG                                                                                                                                                                      |
|       | (2.9)        | 0.25 - 0.065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D10        | [7] | Ω in connect Γ                                                                                                                                                          |
|       | (11)         | $0.2a_2 = -0.06g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1ft       |     | ft incorrect F<br>Ear using $x^2 = 2.05^2$                                                                                                                              |
|       |              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1         |     | For using $v^2 = 3.95^2 + 2a_2[2.1 - distance moved by B]$                                                                                                              |
|       |              | $v^2 = 15.6 + 2(-3)(0.8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1         |     |                                                                                                                                                                         |
|       |              | Speed is $3.29 \mathrm{ms}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1         | [4] |                                                                                                                                                                         |
| Alter | rnativ       | e for <b>6(ii)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | [4] |                                                                                                                                                                         |
| 1110  |              | against friction = $0.06g \times [2.1 - (2 - 0.7)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1         |     |                                                                                                                                                                         |
|       | 11 D         | $a_{\text{purple}} = (2 - 0.7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1         |     | For using KE loss = WD against friction                                                                                                                                 |
|       | ½ O          | $.2 \times 3.95^2 - \frac{1}{2} 0.2 v^2 = 0.48$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1         |     |                                                                                                                                                                         |
|       |              | ed is $3.29 \mathrm{ms}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1         |     |                                                                                                                                                                         |
|       | Spe          | ea 15 5.27 mb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 111        |     |                                                                                                                                                                         |

| Pa     | age 6                           | Mark Scheme: Teachers' version          |            |      |          | Syllabus                       | Paper     |
|--------|---------------------------------|-----------------------------------------|------------|------|----------|--------------------------------|-----------|
|        |                                 | GCE AS/A LEVEL -                        | - May/June | 2010 |          | 9709                           | 41        |
| / (i   | i)                              |                                         | M1         |      | For inte | grating $v_1$ to find s        | 51        |
|        | $\int_0^{15} v_1 dt =$          | 225 ➔                                   | A1         |      |          |                                |           |
|        | $A[(15^2/2 -$                   | $-0.05 \times 15^3/3) - (0-0)] = 22.$   | 5          |      |          |                                |           |
|        | A = 4                           |                                         | A1         |      |          |                                |           |
|        | [4(15-0)]                       | $(05 \times 15^2) = B/15^2$ ]           | M1         |      | For usin | $v_1(15) = v_2(15)$            |           |
|        | <i>B</i> = 3375                 |                                         | A1         | [5]  | AG       |                                |           |
| (i     | ii) $s_2(t) = Bt$               | - <sup>-1</sup> /(-1) (+ C)             | B1         |      |          |                                |           |
|        | [-3375/1:                       | 5 + C = 225]                            | M1         |      | For usin | $s_2(15) = 225$ to             | find C    |
|        | Distance (for $t \ge 1$         | travelled is $[450 - 3375/t]$ m 5)      | A1         |      |          |                                |           |
|        | (                               | - )                                     |            | [3]  |          |                                |           |
| (i     | iii) [450 – 33                  | 75/t = 315]                             | M1         |      | For atte | mpting to solve s <sub>2</sub> | (t) = 315 |
|        | [v = 3375                       | <sup>[</sup> /25 <sup>2</sup> ]         | M1         |      | For subs | stituting into $v = 3$         | $375/t^2$ |
|        | Speed is :                      | $5.4{\rm ms}^{-1}$                      | A1         |      |          |                                |           |
|        |                                 |                                         |            | [3]  |          |                                |           |
| lterna | tive for 7(ii)                  |                                         |            |      |          |                                |           |
| S      | $= \int_{15}^{t} 3375t^{-2} dt$ | $t = -3375(\frac{1}{t} - \frac{1}{15})$ | B1         |      |          |                                |           |
| =      | = 225 - 3375/t                  |                                         |            |      |          |                                |           |
| Γ      | Distance trave                  | lled = 225 + (225 - 3375/t)             | M1         |      |          |                                |           |
|        | Distance trave for $t \ge 15$ ) | lled is $[450 - 3375/t]$ m              | A1         |      |          |                                |           |